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A B S T R A C T   

Arsenic (As) contamination in groundwater is a global crisis that is known to cause cancers of the skin, bladder, 
and lungs, among other health issues, and affects millions of people around the world. Due to the time and 
financial constraints associated with establishing in-depth monitoring programs, it is difficult to monitor and 
map arsenic concentrations over time and across large areas. The goal of this study was to determine the most 
accurate Geographic Information Systems (GIS) interpolation method for mapping the effects of bioremediation 
on groundwater arsenic sequestration across a local-scale study area in northwest Florida (~900 m2) over the 
duration of a nine-month period (pre-injection, one-month post-injection, and nine-months post-injection). We 
used groundwater data collected from 2018 to 2019 to visualize arsenic contamination over time. Measured 
arsenic concentrations from 23 wells were grouped into three categories: (1) decreasing, (2) fluctuating, or (3) 
largely unaffected by the bioremediation procedure. The accuracy of three interpolation methods was also 
investigated: Inverse Distance Weighted (IDW), Ordinary Kriging (OK), and Empirical Bayesian Kriging (EBK). 
Statistical results using the leave-one-out cross validation (LOOCV) process showed that OK consistently pro-
vided the most accurate predictions of arsenic concentrations across space and time ([Root Mean Square Error 
(RMSE) = 0.265] and accurately predicted regulatory arsenic concentrations below 0.05 mg/L in nine of 11 
wells, while IDW and EBK only accurately predicted four and five wells, respectively. While it was shown that OK 
tends to underpredict arsenic maxima, this did not affect the overall accuracy of the interpolation compared to 
results from EBK (RMSE = 0.297) and IDW (RMSE = 0.272). Overall, these interpolations aided in the inter-
pretation of the extent of bioremediation, revealing the need for repeated injections to continuously remove 
arsenic from the groundwater. The study will provide guidance and evaluation methods for international and 
governmental organizations, industrial companies, and local communities on how to understand spatial and 
temporal distributions of arsenic contamination and inform bioremediation efforts at various scales in the future.   

1. Introduction 

Millions of people worldwide suffer from diseases caused by 
groundwater arsenic contamination (World Health Organization, 2019). 
Geogenic arsenic contamination is well known in regions like the Bengal 
Basin, yet anthropogenic sources of arsenic contamination, such as those 
produced at industrial and agricultural sites, can also be a threat to 
groundwater quality, especially in developed regions around the world 
(Woolson, 1983; Smedley and Kinniburgh, 2002). Most of these cases 
originate from the use of herbicides, pesticides, and other agricultural 
aids (Bencko and Foong, 2017; Lee et al., 2018). Arsenical herbicides are 
soluble in water, potentially leading to arsenic accumulation in under-
lying aquifers over time. Although arsenical herbicides and pesticides 

have been phased out beginning in the 1980s and barred from use by the 
U.S. Environmental Protection Agency (EPA) in 2009 (U.S. EPA, 2009), 
legacy contamination from industrial manufacturing sites and extensive 
field applications still pose a threat to groundwater quality today. 

GIS has emerged as an effective tool for visualizing environmental 
contaminants. Often due to time and financial constraints, limited 
numbers of groundwater samples are collected in the field for chemical 
analysis, leading to sparse datasets that could diminish experimental 
results and conclusions (Liu et al., 2004). Interpolation of isolated well 
data can be used to predict values at unsampled locations using nearby 
measured values (Tobler, 1970) and fill in gaps in the conceptual site 
model. Three common interpolation methods for groundwater 
contamination mapping are Inverse Distance Weighting (IDW), Kriging, 
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and Empirical Bayesian Kriging (EBK). IDW is a deterministic interpo-
lation method which produces an estimated surface by considering the 
similarity between measured points and determining the optimum 
weight needed to control the influence of points at a certain distance (de 
Smith et al., 2020). IDW models adhere to Tobler’s First Law (Tobler, 
1970), in which measured values that are farther away from the point of 
estimation should be appropriately diminished or weighted based on 
this distance (de Smith et al., 2020). Kriging and EBK are both geo-
statistical interpolation methods, which differ from deterministic 
interpolation models in that they use the measured data points to 
describe a true population and then create an overarching model from 
this population to predict values at varying distances (de Smith et al., 
2020). Kriging is a multistage process that uses a semivariogram to 
consider the distance and variation in the measured values to estimate 
unknown values (Paramasivam and Venkatramanan, 2019; de Smith 
et al., 2020). Kriging has a variety of mathematic models such as Simple 
Kriging, Universal Kriging, and Ordinary Kriging (OK). OK uses a 
location-dependent mean, and its semivariogram computes optimal 
weights (like IDW) and assigns weights to measured points to predict 
values at unsampled locations (Paramasivam and Venkatramanan, 
2019; de Smith et al., 2020). EBK is a newly developed interpolation 
method that automates the intensive construction of a valid Kriging 
model through simulating the measured points (Magesh and Elango, 
2019; ESRI, 2020b). Unlike Kriging, EBK utilizes multiple semivario-
grams and considers the uncertainty among them (ESRI, 2020b). Spe-
cifics regarding the mathematical basis of OK, EBK, and IDW 
interpolation are detailed in Xie et al. (2011), Krivorucko (2012a,b), 
Singh and Verma (2019), de Smith et al. (2020), and ESRI (2020b). 

While interpolation is a common method used in GIS, disagreement 
still exists regarding the accuracy of interpolating contamination under 
different conditions for various pollutants. For example, Xie et al. (2011) 
investigated the performance of IDW and OK, along with Radial Basis 
Functions (RBF), across a 605 km2 agricultural area in Beijing, China. 
They discovered that while OK was the most accurate in predicting soil 
heavy metal contamination, local maxima and minima were best pre-
served with IDW and RBF, as the maxima were underestimated with OK. 
Rabah et al. (2011) found that Kriging gave the most accurate interpo-
lation results for groundwater chloride concentrations and water levels 
along the Gaza Strip (365 km2). More recent studies like Mirzaei and 
Sakizadeh (2016) compared OK, EBK, and IDW in their ability to predict 
various groundwater quality parameters over 1100 km2 in Khuzestan, 
Iran, through which they determined that EBK was the best method 
because it yielded the least error. However, they noticed that EBK and 
OK had strong smoothing effects in overestimating local minima, 
meaning that the interpolation overpredicted values around known low 
values and, thus, obscured the overall minima. Most recently, Singh and 
Verma (2019) investigated groundwater nitrate concentrations in 
Lucknow City, India (429.5 km2) and found that Kriging, compared to 
IDW, was the most accurate method, while Magesh and Elango (2019) 
looked at groundwater fluoride concentrations in the Dindigul district, 
India (6267 km2) and discovered that EBK, compared to IDW, had the 
least amount of error. 

Interpolation methods have previously been used to understand the 
spatial distribution of groundwater arsenic. Shamsudduha (2008) 
examined different interpolation methods in their ability to predict 
arsenic concentrations in shallow aquifers across a very large study area 
in Bangladesh (144,000 km2). The analysis found that OK was a better 
predictor of arsenic concentrations than IDW, but OK systematically 
underestimated arsenic maxima and had a strong smoothing effect at the 
regional scale. The study determined that the lack of sampling locations 
across a large study area with high spatial variability hindered the 
estimation of arsenic in shallow aquifers that were significantly influ-
enced by biogeochemical processes. Although Gong et al. (2014) found 
that IDW, compared to several kriging models, performed best when 
accounting for well depth and elevation as covariates, they also noticed 
that the regional interpolation of arsenic across Texas (696,241 km2) 

yielded a large degree of variation due to different aquifer and geologic 
properties. Overall, the selection of interpolation methods in ground-
water studies proves to be site and scale specific. 

Typically, groundwater arsenic remediation efforts involve ex-situ 
pump-and-treat methods; however, these treatments are expensive, 
take several months or years to reduce arsenic concentrations, and, most 
often, fail to remove enough arsenic to meet safe standards (Lee et al., 
2000; Ford et al., 2007; Russo et al., 2010). An alternative technique 
proposed by Saunders et al. (1996) involves the in-situ bioremediation 
of arsenic by injecting a ferrous sulfate mixture with a source of organic 
carbon to stimulate indigenous sulfate-reducing bacteria (SRB) and 
biomineralize pyrite (Lee et al., 2018; Saunders et al., 2018; Fischer, 
2020). Because arsenic has a high affinity for pyrite (Huerta-Diaz and 
Morse, 1992; Bostick and Fendorf, 2003; Lee et al., 2005), the working 
hypothesis is that dissolved arsenic can be sequestered via adsorption on 
the surface of iron sulfides (i.e., pyrite) or by co-precipitation under 
stimulated sulfate-reducing conditions. The technique has been shown 
to sequester groundwater arsenic through formation of biogenic pyrite 
in field-scale applications (Lee et al., 2018; Fischer 2020). However, the 
potential for both short-term (~one month) and long-term (~nine 
months) remediation using this technique is still unclear. Understanding 
both spatial and temporal patterns of the sequestration of arsenic is 
critical in evaluating the technique’s remediation potential. Thus, the 
goal of this study is to determine the most accurate GIS interpolation 
method for mapping the effects of bioremediation on groundwater 
arsenic sequestration across a local-scale study area in northwest Florida 
(~900 m2) over the duration of a nine-month period (pre-injection, 
one-month post-injection, and nine-months post-injection). We used 
groundwater data collected from 2018 to 2019 to conduct a 
high-resolution investigation into the visualization of arsenic contami-
nation over time. 

2. Materials and methods 

2.1. Study site 

The study by Fischer (2020) devised an in-situ arsenic bioremedia-
tion method to sequester arsenic for nine months at an arsenic 
contaminated industrial site in northwest Florida. The aquifer at the 
industrial site is part of the Surficial Aquifer System of Florida, mostly 
comprised of quartz-rich sand and sandy clay that extend to 6.0–7.6 m in 
depth (Lee et al., 2018). The aquifer has moderately oxidizing conditions 
and a shallow water table, measuring ~1.5 m in depth, with the general 
groundwater flow direction to the west and northwest at a rate of about 
20 m/year (Fig. 1). The clean-up standard of this specific legacy site is 
0.05 mg/L (Lee et al., 2018; Saunders et al., 2018). To reach this stan-
dard, an injectate consisting of 5 kg of ferrous sulfate, ~27 kg (60 lbs) of 
molasses, and ~1 kg (2 lbs) of fertilizer per 3785.4 L (1000 gallons) of 
water was used to stimulate bacterial sulfate reduction (Fischer, 2020). 
Twenty-three wells (11 injection wells and 12 monitoring wells) were 
installed across the ~900 m2 site, with the injection wells placed hy-
drologically upgradient of the monitoring wells for the downgradient 
movement of the injectate to facilitate full-scale remediation (Fig. 1). 
The ferrous sulfate mixture was injected during the week of June 17, 
2018. Groundwater samples were collected using a peristaltic pump 
prior to the injection as well as throughout the bioremediation process, 
until the end of the experiment during the week of March 17, 2019. 
Three time periods spanning the entire field experiment duration were 
chosen to determine the success of the bioremediation procedure using 
interpolation analyses: before the injection on May 15, 2018, one month 
after the injection on July 19, 2018, and nine months after the injection 
on March 18, 2019. Concentrations of arsenic in the water were 
measured by Agilent 7900 Inductively Coupled Plasma-Mass Spec-
trometer (ICP-MS) in the Department of Geosciences at Auburn Uni-
versity using EPA Method 6020 (U.S. EPA, 2014). Mineralogical and 
geochemical data of the precipitated biominerals formed from the 
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indigenous SRB to sequester arsenic can be found in Fischer (2020). 

2.2. Interpolation and spatial analysis 

IDW, OK, and EBK, interpolations were calculated and analyzed 
using ArcGIS Pro 2.4. The ArcGIS Pro Geostatistical Wizard was used to 
create interpolation maps for the three time periods spanning the 
bioremediation experiment. The Geostatistical Wizard allows one to 
manually create the best-fit model based on the statistical properties of 
the dataset. Additionally, the Geostatistical Wizard generates cross- 
validation and validation analyses of the interpolation surface such 
as leave-one-out cross-validation (LOOCV), which has been previously 
used as a cross-validation technique in environmental studies (Xie 
et al., 2011; Mirzaei and Sakizadeh, 2016). Through LOOCV, the pro-
gram systematically removes each point in the interpolation, predicts 
its value by interpolating from the remaining points, and finally 
compares the predicted value to the measured value (Xie et al., 2011; 
Mirzaei and Sakizadeh, 2016). These validation outputs enable the 
user to determine which of the interpolation models is the most ac-
curate representation for the dataset. 

Arsenic concentrations were higher in the northwest region of the 
site and lower in the eastern and southern portions of the site. Arsenic 
showed a first order decrease in concentration across the study site over 
the three time periods. Consistent with best-practices (Lange and 
Krause, 2019), the first order trend was removed for each of the three 
interpolation methods to adhere to the assumption of Kriging that there 
should be no global trends in the dataset (Shamsudduha, 2008; Para-
masivam and Venkatramanan, 2019). Additionally, arsenic concentra-
tions were not normally distributed and were corrected using a log 
transformation in both the OK and EBK interpolation models (Gong 
et al., 2014; Singh and Verma, 2019), verified through the Geostatistical 
Wizard’s Quantile-Quantile (QQ) Plots. For the OK interpolation, the 
kernel function was set to exponential and the function type to semi-
variogram, with the interpolation model optimized for goodness of fit 
and accuracy; all other variables were kept at their standard values. For 
the EBK interpolation, the transformation type was set to log empirical 
and the semivariogram model type was set to exponential; all other 

values were kept to their standards. The semivariogram power was kept 
at 100 simulations for improved operation, efficiency, and accuracy 
(Tomlinson, 2019). For the IDW interpolation, the weighting power was 
set to one, as this showed the lowest root mean square error (RMSE) 
compared to higher weighting powers. This implies that for the arsenic 
data, points farther away can still have a significant influence on the 
predictions (Xie et al., 2011). 

The cross-validation indicators of RMSE and mean values as well as 
prediction and error plots were utilized to assess the validity and ac-
curacy of the three interpolation methods throughout the bioremedi-
ation procedure. RMSE was used to directly assess the accuracy of the 
interpolation’s predictions, as RMSE values closer to zero indicate that 
predicted values are numerically close to the measured values (Krause, 
2019; Lange and Krause, 2019). The mean value denotes the average 
of the cross-validation (CV) errors and is important in determining any 
bias or smoothing effects in the interpolation model (Krause, 2019; 
Lange and Krause, 2019). Strong smoothing indicates that the inter-
polation either significantly overestimates local minima or un-
derestimates local maxima, which inaccurately diminishes or obscures 
the contrast between the concentration changes across a site. Thus, if 
the mean is close to zero there is minimal bias; if the mean is above 
zero, the model systematically overestimates the actual values; while 
if the mean is below zero, the model consistently underestimates the 
values (Krause, 2019). Additionally, the measured arsenic concen-
trations were compared and plotted against the interpolation’s pre-
dicted arsenic concentrations and the cross-validation errors. Final 
interpolation maps were created, and the interpolation surfaces were 
transformed from Geostatistical Analyst layers into rasters using the 
Geostatisical Analyst (GA) Layer to Raster tool. 

3. Results 

3.1. Measured arsenic concentrations 

Spatial and temporal patterns were found among the results of 
bioremediation across the site. The 23 wells were grouped into three 
categories based on resultant arsenic concentrations over the course of 

Fig. 1. Overview of study site in northwest Florida showing ground elevation (contours in meters), injection wells (in black), and monitoring wells (in white). The 
general direction of groundwater flow is toward northwest, as shown by the black arrow. 
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the study: (1) decreasing, (2) fluctuating, or (3) largely unaffected (Fig. 2; 
Table S1 in Appendix A). Four wells showed continuously decreasing (1) 
arsenic concentrations throughout the nine months (LH-4, LH-10, M-1, 
and RA-9), three of which were located in the northwest portion of the 
site (LH-10, M-1, and RA-9) (Fig. 2a and b), in the downgradient di-
rection of groundwater flow. The majority of wells (12/23) displayed 
large fluctuations (2) in arsenic concentrations over time (I-1, I-2, I-3, I-4, 
I-5, I-6, I-7, I-11, LH-2, LH-5, M-3, and RA-12). Several wells showed 
sharp decreases in arsenic concentration between the initial injection 
and one month reading, and then an increase in concentration between 
one and nine months (I-1, I-2, 1–3, 1–4, and I-11). Most wells with 
fluctuating arsenic concentrations were in the northwest portion of the 
site (I-1, I-2, I-3, I-4, LH-2, LH-5, M-3, and RA-12), with the remaining 
being injection wells located in the east (I-5, I-6, I-7, and I-11) (Fig. 2a). 
Finally, seven wells remained largely unaffected (3) by the injection, 
with arsenic concentrations showing no significant changes over time (I- 
8, I-9, I-10, LH-7, RA-11, RA-13, and RA-14) (Fig. 2b). These seven wells 
are found exclusively in the east and southwest sides of the site (Fig. 2a). 
The injection and monitoring wells in the east and southeast portions of 
the site maintained negligible concentrations of arsenic throughout the 
study (Fig. 2a). In contrast, wells in the northwest report the highest 
initial concentrations of arsenic, indicating a potential arsenic plume 
centered around injection well I-3 (Fig. 2a). Of the wells that reported 
arsenic concentrations above the site clean-up standard, two (LH-2 and 

M-1) decreased below 0.05 mg/L after nine months (Fig. 2b). Thus, the 
monitoring wells of LH-2 and M-1, with the potential addition of RA-9 
and M-3, serve as best-case scenarios for demonstrating the success of 
the remediating mixture at the field site, with these wells depicting a 
significant reduction in arsenic to near or below the acceptable standard 
(Fig. 2b). Overall, arsenic concentrations were below the regulatory 
standard in 12 wells after one month and 11 wells after nine months. 

3.2. Predicted arsenic concentrations with interpolation 

The interpolation maps generated from the IDW, OK, and EBK 
methods show detailed differences in the overall accuracy of their pre-
dictions due to over- or underestimation (Fig. 3). All three methods 
predicted that the highest arsenic measurements were concentrated in 
the northwest, while lower concentrations (near or below 0.05 mg/L) 
were found primarily in the east and southeast of the study site. 

Before the injection, EBK and IDW accurately predicted arsenic 
concentrations above 0.75 mg/L centered around well I-3, while OK 
underestimated this arsenic maximum (Fig. 3). Additionally, nine wells 
(I-8, I-9, I-10, LH-4, LH-7, LH-10, RA-11, RA-13, and RA-14) had 
measured concentrations below 0.05 mg/L (Fig. 2). The OK and EBK pre- 
injection interpolations successfully predicted arsenic concentrations in 
eight of these wells (missing LH-10), while IDW only accurately pre-
dicted four of the wells (missing I-8, I-9, LH-7, LH-10, and RA-13). 

Fig. 2. Dissolved arsenic concentrations (mg/L) during the three sampling intervals at each injection and monitoring well shown in their respective locations and 
with ground elevation (contours in meters) (a) and on the bar chart (b) where the dashed line represents the site’s acceptable arsenic limit of 0.05 mg/L. 
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Moreover, IDW also over-predicted arsenic concentrations in these four 
wells, estimating values between 0.025 and 0.05 mg/L. 

After one month of bioremediation, all interpolation methods pre-
dicted highest arsenic concentrations in the northwestern-most portion 
of the site, around wells LH-5 and RA-9 (Fig. 3b,e,h). However, only EBK 
predicted arsenic concentrations above 0.75 mg/L in these two wells, 
while OK and IDW predicted values of 0.5–0.75 mg/L. Yet, all three 
methods were inaccurate when compared to the measured values of 
0.823 mg/L in LH-5 and 0.722 mg/L in RA-9. Both OK and EBK pre-
dicted low concentrations of arsenic around LH-10 and M-1 compared to 
the surrounding wells; however, EBK was more accurate in predicting 
concentrations below 0.05 mg/L at LH-10 and M-1 (Fig. 2). EBK 
correctly predicted all 12 wells with concentrations below the 0.05 mg/ 
L standard (I-6, I-8, I-9, I-10, I-11, LH-4, LH-7, LH-10, M-1, RA-11, RA- 
13, and RA-14), OK accurately predicted 10 wells (missing LH-10 and M- 
1), and IDW accurately predicted eight wells (missing I-6, LH-7, LH-10, 
and M-1). 

After nine months, the three methods indicated that the highest 
concentrations of arsenic existed in the northwestern portion of the site, 
extending from the northwest corner around LH-5 and RA-9 to slightly 
west of the center of the site at RA-12 (Fig. 3c,f,i). IDW predicted higher 

arsenic concentrations in this elevated area than both OK and EBK 
(0.5–0.75 to >0.75 mg/L compared to 0.25–0.5 mg/L). OK was the most 
accurate interpolation method in predicting regulatory arsenic concen-
trations, depicting nine of the measured 11 wells (I-8, I-10, LH-4, LH-7, 
LH-10, M-1, RA-11, RA-13, and RA-14) accurately below 0.05 mg/L 
(missing I-9 and LH-2), while IDW and EBK only accurately predicted 
four and five wells, respectively (IDW missed I-8, I-9, LH-2, LH-7, LH-10, 
M-1, and RA-13, and EBK missed I-8, I-9, LH-2, LH-10, M-1, and RA-13). 

3.3. Cross-validation analyses 

3.3.1. Statistical results 
The RMSE and mean of the cross-validation values (mean CV) over 

the duration of the study from the IDW, OK, and EBK methods were used 
to assess the accuracy of each interpolation method in predicting arsenic 
concentrations across space and time. The RMSE values of the in-
terpolations determined whether the predicted arsenic concentrations 
matched the measured concentrations, with values close to zero indi-
cating a high prediction accuracy. Similarly, the mean CV values noted 
smoothing effects and bias in the interpolations, with values above zero 
indicating overestimation of arsenic concentrations and values below 

Fig. 3. Visualization of results of interpolation methods for different time periods: Ordinary Kriging (OK) for pre-injection (a), one month later (b), and nine months 
later (c); Empirical Bayesian Kriging (EBK) for pre-injection (d), one month later (e), and nine months later (f); and Inverse Distance Weighted (IDW) for pre-injection 
(g), one month later (h), and nine months later (i). Colors represent dissolved arsenic concentrations in milligrams per liter (mg/L) ranging from low (green) to high 
(red). Injection and monitoring groundwater wells, represented as groundwater sample locations, are depicted as black and white dots on the map, respectively. 
Groundwater flow moves in the northwest direction as shown by the black arrow in Fig. 1. (If viewing print version: for interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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zero denoting underestimation of arsenic. Before the injection, OK had a 
RMSE of 0.391 and a mean CV value of − 0.034 (Table 1). After one 
month, the RMSE decreased to 0.154, while the mean CV slightly 
decreased to − 0.035. The RMSE for OK then increased to 0.243 and the 
mean CV increased to − 0.023 after nine months. For the EBK interpo-
lation, EBK reported a RMSE of 0.49 and a mean CV of 0.113 before the 
injection. Both the RMSE and mean CV then dropped to 0.154 and 0.023 
after one month, respectively. After nine months, the RMSE and mean 
CV of the EBK interpolation both moderately increased to 0.225 and 
0.046, respectively. The IDW interpolation had a RMSE of 0.399 and a 
mean CV of 0.046 before the injection, which both significantly 
decreased after one month to 0.186 and 0.008, respectively. Both the 
RMSE and mean CV increased to 0.233 and 0.026, respectively, after 
nine months (Table 1). 

3.3.2. Prediction and error results 
Besides the RMSE and mean CV values, prediction and error plots are 

automatically generated during the interpolation process. These plots 
were used to determine the accuracy of the three interpolation methods. 
Plots of the measured arsenic concentrations versus each interpolation’s 
predicted arsenic concentrations as well as of the cross-validation errors 
versus the measured concentrations are shown in Fig. 4 (OK) and S1 in 
Appendix A (IDW and EBK). For the prediction plots, an accurate model 
would show a regression line that follows a slope of 1 indicating that the 
predicted concentrations align with the measured concentrations 
(Krause, 2019; Lange and Krause, 2019). Deviations from a slope of 1 
indicate error in the model fit. OK showed a correlation slope of 0.419 
for the predicted arsenic concentrations before the injection and a very 
strong correlation of 1.01 after one month (Fig. 4a). However, OK 
showed low correlation in its predicted concentrations after nine 
months, with a regression slope of 0.051. EBK had consistently weak 
correlation slopes for its pre-injection and nine-month predicted con-
centrations (0.226 and 0.237, respectively) but showed a strong corre-
lation for its one-month concentrations (0.851) (Fig. 4b). IDW showed 
the weakest overall correlations of the three interpolation methods, with 
regression slopes of 0.409, 1.922, and 0.210 prior to the injection, one 
month after, and nine months after the injection, respectively (Fig. 4c). 
The average regression slope values for each of the interpolation 
methods throughout the bioremediation process were 0.489 for OK, 
0.438 for EBK, and 0.209 for IDW. OK and EBK showed similar average 
error regression slopes of − 0.708 and − 0.706, respectively, while IDW 
showed the highest average error slope of − 0.822 (Fig. S1). 

4. Discussion 

4.1. Arsenic concentrations across space and time 

There were three trends in arsenic concentrations over the course of 
the nine-month bioremediation: (1) several wells (4/23) showed 
decreasing arsenic concentrations over time (LH-2, LH-10, M-1, and RA- 

9), (2) the majority of wells (12/23) displayed fluctuating patterns of 
arsenic concentrations, and (3) the seven remaining wells (I-8, I-9, I-10, 
LH-7, RA-11, RA-13, and RA-14) depicted little to no change in arsenic 
over time, remaining below the acceptable limit before and after the 
injection. Wells with a decreasing trend in arsenic were located in close 
proximity to injection wells and were first to exhibit reductions in 
arsenic (e.g., LH-10 and M-1), while those farther away (e.g., LH-2 and 
RA-9) depicted significant improvements in arsenic concentrations after 
nine months (Fig. 2). These findings can be explained by the slow ve-
locity of groundwater at the site (20 m/y) and is representative of the 
amount of time it took the injectate to reach the wells located farther 
downgradient. In the 12 fluctuating wells, which displayed a striking 
contrast in arsenic concentrations, one of two scenarios likely occurred: 
(1) an influx of untreated groundwater increased arsenic over time or (2) 
the injectate did not reach its intended wells. The injection wells were 
predominantly located upgradient throughout the site (e.g. in the east or 
southwest), meaning that without repeated injections, they were sus-
ceptible to recontamination due to upgradient, untreated groundwater 
flowing into the site. This untreated groundwater was more oxidizing 
than the treated groundwater, potentially destabilizing the formed 
arsenian pyrite and releasing arsenic back into the groundwater. Thus, 
while the injectate effectively removed arsenic after one-month, 

Table 1 
Statistical results of each interpolation method for each time period in the study. 
Interpolation methods used: Ordinary Kriging (OK), Empirical Bayesian Kriging 
(EBK) and Inverse Distance Weighted (IDW). Root Mean Square Errors (RMSE) 
and mean cross-validation values (Mean CV) are shown for each time-period. 
The global mean represents the averages of RMSE and Mean CV throughout 
the study.   

OK EBK IDW 

RMSE Mean 
CV 

RMSE Mean 
CV 

RMSE Mean 
CV 

Pre-Injection 0.391 − 0.034 0.49 0.113 0.399 0.046 
One Month Later 0.163 − 0.035 0.154 0.023 0.186 0.008 
Nine Months 

Later 
0.243 − 0.023 0.225 0.046 0.233 0.026 

Global Mean 0.266 − 0.031 0.296 0.063 0.273 0.027  

Fig. 4. The predicted arsenic concentrations and error values versus the 
measured arsenic concentrations before the injection from the OK, EBK, and 
IDW interpolation methods. Additional prediction and error plots for one- and 
nine-months post-injection can be found in Figure S1 in Appendix A. 
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untreated groundwater flowed into the site after nine months, which 
remobilized arsenic and induced a significant increase in arsenic in 
many of the injection wells located in the east and southwest (I-5, I-6, I- 
7, and I-11). In addition to the influx of untreated water, the injection 
and monitoring wells located around the arsenic plume in the northwest 
(I-1, I-2, I-3, I-4, LH-5, and RA-12) also showed increases in arsenic 
possibly due to a limited flow path of the injectate, and thus, the 
injectate did not effectively reach the intended wells. For instance, LH-5 
was located far downgradient of surrounding injection wells (e.g., ~7.5 
m downgradient of I-3 and ~12.5 m downgradient of I-1), and while a 
reduction in arsenic did occur after nine months, arsenic concentrations 
remained well above the standard. In contrast, the nearby monitoring 
well RA-9 showed a significant decrease in arsenic near the acceptable 
level, indicating that the injectate was preferentially flowing to RA-9 
rather than to both wells equally. Thus, the increase in arsenic in 
many of the injection wells in the northwest could be explained by 
variations in the groundwater flow paths. In contrast to the decreasing 
and increasing arsenic trends, the trend of wells that appear largely un-
affected by SRB bioremediation is due to the very low arsenic concen-
trations (5-10x less than 0.05 mg/L) reported in these wells. Due to these 
low concentrations, the wells exhibited only slight increases or de-
creases in arsenic throughout the nine months. 

After examining and assessing the bioremediation trends in arsenic, 
this study definitively determined the importance of repeated injection 
treatments of contaminated groundwater. Repeated injections of the 
ferrous sulfate mixture would likely maintain reducing conditions and 
stabilize the arsenian pyrite for an extended period of time, even during 
the influx of untreated groundwater. Additionally, multiple injections 
may allow the variable groundwater flow to carry the injectate to the 
missed downgradient wells for full-scale remediation. New upgradient 
injection points near the missed wells may be needed if repeated in-
jections still fail to reach these locations. 

4.2. Accuracy of interpolation methods in determining arsenic 
concentrations 

The high sampling resolution (23 wells) and a local-scale study area 
(~900 m2) was key in demonstrating the accuracy of the interpolations 
and certainty in the overall findings of this study. Notably, the study’s 
results differed from many previous environmental monitoring studies 
due to scale and sampling resolution, considering that most studies 
interpolated over very large areas (>100 km2) with a lower sampling 
density. For instance, Mirzaei and Sakizadeh (2016) analyzed 65 wells 
over 1100 km2, and Xie et al. (2011) analyzed 137 samples across an 
area half the size (605 km2). Because Xie et al. (2011) had a much higher 
sampling resolution, this study aligned more closely to the results found 
by Xie et al. (2011) than Mirzaei and Sakizadeh (2016), in which OK 
showed consistent underprediction but overall accuracy in prediction. 
Studies that had a lower sampling resolution over a larger study area (e. 
g. Shamsudduha, 2008; Gong et al., 2014; Mirzaei and Sakizadeh, 2016) 
noted high uncertainty and discrepancies in their interpolations. Mirzaei 
and Sakizadeh (2016) found that although EBK yielded the least amount 
of error in their study, both EBK and OK showed strong smoothing ef-
fects and consistently overestimated local minima, which is problematic 
in regard to monitoring regulatory standards of groundwater contami-
nants. Similarly, Magesh and Elango (2019), who used 49 wells to 
interpolate fluoride over 429.5 km2, reported high error in their ArcGIS 
Pro error plots and large RMSE values. Again, they saw a strong 
smoothing effect in both the EBK and IDW interpolations and a high 
error in their predictions at low concentrations. Both Shamsudduha’s 
(2008) and Gong et al.’s (2014) interpolations of groundwater arsenic 
also highlighted how a low sample density yielded a lower prediction 
accuracy due to varying geology and biogeochemical processes over a 
large area. Considering these comparisons, our study benefited from a 
local-scale site (~900 m2) with high-density data (23 wells) to increase 
the prediction accuracy, which allowed the study to effectively analyze 

and critique different interpolation methods. 
The RMSE and mean CV values of the interpolations across space and 

time are reliable criteria to evaluate the accuracy of interpolation 
methods (e.g., Magesh and Elango, 2019; Singh and Verma, 2019). 
RMSE values close to zero indicate a high prediction accuracy, with the 
predicted (interpolated) arsenic concentrations closely aligning with the 
measured arsenic concentrations. By averaging the RMSE values of the 
three interpolation methods across the three sampling periods, OK 
showed the lowest global RMSE of 0.266, IDW had a RMSE of 0.273, and 
EBK depicted the highest global RMSE of 0.296 (Table 1). Because OK 
had the lowest overall RMSE and yielded consistently low RMSE values 
throughout the bioremediation process, OK had the highest accuracy in 
predicting arsenic concentrations over space and time. Accordingly, 
IDW and EBK had higher RMSE values, and, thus, a lower overall ac-
curacy in predicting arsenic concentrations. The mean CV value is 
important for determining if a bias (underestimation or overestimation) 
exists in the interpolation model (Krause, 2019; Lange and Krause, 
2019). Our results showed that OK had mean CV values below zero for 
each timepoint during the bioremediation process, with a global mean of 
− 0.031 (Table 1). In contrast, EBK and IDW both systematically yielded 
mean CV values above zero, with global mean CV values of 0.063 and 
0.027, respectively (Table 1). Thus, OK consistently underestimated 
arsenic concentrations, whereas EBK and IDW overestimated concen-
trations. The statistical results also indicate that OK is the most accurate 
of the three interpolation methods and that it tends to underpredict 
arsenic concentrations. Our results agree with the findings of Sham-
sudduha (2008), Xie et al. (2011), and Singh and Verma (2019), in 
which they reported OK as having the lowest RMSE and mean values. 

In this study, OK was best overall in determining which wells had 
met regulatory arsenic concentrations (<0.05 mg/L) throughout the 
bioremediation process. This finding aligns with previous results by Xie 
et al. (2011), who concluded that OK had the “strongest ability” to 
accurately predict the overall trend in pollution across a site (Fig. 3a–c). 
However, OK consistently underestimated the local arsenic maxima that 
represented the arsenic plume on site. Yet, this trend of underestimation 
is also noted by Xie et al. (2011) and Mirzaei and Sakizadeh (2016). 
While this study confirms OK’s trend in underestimation, there are no 
distinct instances of overprediction, perhaps due to the lack of a singular 
arsenic minima. Rather, there is a large area of low arsenic concentra-
tion (<0.05 mg/L), which OK accurately represented. Both EBK and IDW 
showed a tendency for overestimation, with EBK displaying a large 
smoothing effect on the data. EBK was less accurate overall compared to 
OK because it showed a consistent inclination for overestimation, 
especially in regard to wells around the local arsenic maxima of the 
plume, which aligns with findings from Mirzaei and Sakizadeh (2016) 
(Fig. 3e). The study also agrees with the large smoothing effect of EBK 
found by Magesh and Elango (2019) but provides a slight caveat, noting 
that the EBK method produces less systematic bias than IDW. In fact, the 
IDW method was the least accurate in predicting arsenic across the site, 
only accurately predicting concentrations <0.05 mg/L in a small frac-
tion of the wells throughout the entire bioremediation process due to 
consistent overestimation, in contrast to Mirzaei and Sakizadeh’s (2016) 
findings (Figs. 3g–i and 4c). Overall, OK was the most accurate inter-
polation method in predicting arsenic concentrations across space and 
time; EBK gave sufficient results but had a tendency for overestimation, 
and IDW showed the most inaccurate results and showed consistent 
problems with overestimation. 

The RMSE and mean CV values represent the overall accuracy of the 
interpolation method, however, these measures may overshadow 
important nuances in predicting arsenic concentrations near the regu-
latory threshold, an important part of evaluating effective remediation. 
Plots of the CV errors versus the measured arsenic concentrations 
(Fig. 4) reveal the degree of smoothing in the model, depicting whether 
the errors are independent of the measured values. Moreover, the error 
plots can be used to carefully assess the error in the RMSE values and 
confirm the accuracy of these methods in predicting low concentrations. 
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If the error regression line is horizontal, then the model accurately 
predicts values across the entire range of the measured values. In this 
study, however, the regression line showed a negative slope, meaning 
the lowest values were underestimated while the highest values were 
overestimated (Krause, 2019). Considering this, OK and EBK showed 
moderate-to-high levels of systematic smoothing (bias) throughout the 
bioremediation process, reporting average error regression slopes of 
− 0.708 and − 0.706, respectively, while IDW depicted the highest sys-
tematic smoothing, with an average error slope of − 0.822 (Fig. 4). 
Importantly, in the OK prediction plots, predicted arsenic at low con-
centrations closely aligns (near a 1:1 ratio) with the measured concen-
trations, but predicted concentrations deviate at high arsenic 
concentrations. Similarly, in the OK error plots, the error regression 
slopes intercept the y axis near zero, meaning that predicted arsenic 
concentrations at low concentrations (<0.05 mg/L) have a small amount 
of error (Fig. 4). Careful interpretation of the relative error across the 
wide range of arsenic concentrations reinforce the accuracy of OK for 
predicting arsenic concentrations near the regulatory threshold. For EBK 
and IDW, the predicted low concentrations show more distinct differ-
ences from the measured concentrations at low concentrations, evi-
denced by their error regression slopes have y intercepts significantly 
higher than zero throughout the experiment (Fig. 4b and c). All inter-
polation methods show that as arsenic concentrations increase, the 
amount of prediction error also increases, which explains the high de-
gree of smoothing and potential bias seen at higher arsenic concentra-
tions. OK was the most accurate of the three methods in its predictions 
overall and showed the least amount of error especially at concentra-
tions near the regulatory threshold. 

4.3. Methods and challenges of arsenic remediation 

Several treatment methods have been developed to remediate water 
and groundwater arsenic contamination, with most facing efficacy or 
cost-related challenges. All methods would serve to benefit from inter-
polation and visualization of concentrations across space and time. 
Notable methods for arsenic remediation include co-precipitation with 
iron coagulants, filtration using ion exchange resins or membranes, 
adsorption by iron oxides, activated alumina, and ex-situ and in-situ 
bioremediation (c.f. Mondal et al., 2013). Yet, coagulation and filtra-
tion systems often become clogged, and adsorption filters using iron 
oxide or activated alumina create toxic sludge. These ion exchange, 
membrane, and adsorption filters also cannot effectively remove arse-
nite, the more toxic form of arsenic. Additionally, ex-situ remediation, or 
“pump and treat” techniques, involve pumping large quantities of 
groundwater for above-ground treatment, which is usually expensive (Pi 
et al., 2017). Considering these issues, in-situ bioremediation, as used in 
this study, appears as the most cost-efficient and effective method for 
groundwater arsenic removal. Low-cost remediating mixtures can be 
directly injected into the contaminated groundwater and stimulate 
bacteria to precipitate arsenic-sorbed biominerals, without producing 
any toxic by-products. Furthermore, iron (Fe), sulfate (SO4), and 
hydrogen sulfide (H2S) concentrations can be used to monitor the 
progress of in-situ arsenic bioremediation: initially, the injection would 
cause an increase in Fe, SO4, and As (Fischer, 2020). Then subsequent 
concurrent decreases in Fe, SO4, and As indicate the precipitation of 
As-sorbing pyrite, whereas H2S, which is produced by sulfate reducing 
bacteria (SRB), reacts with Fe to produce pyrite for arsenic removal (Lee 
et al., 2018). No matter which method is used for arsenic bioremedia-
tion, there is a strong need for estimating concentrations in unmeasured 
areas. The results of this study indicate that interpolation is an effective 
way to aid in the interpretation and extent of bioremediation across 
space and time. 

5. Conclusions 

The spatial and temporal visualization of arsenic concentrations has 

been key to identifying the effectiveness of groundwater arsenic biore-
mediation. The results showed that 23 wells exhibited decreasing, fluc-
tuating, or largely unchanging arsenic concentrations over the nine 
months of bioremediation. However, the wells with fluctuating arsenic 
concentrations saw increases in arsenic after one or nine months due to 
the influx of untreated groundwater over time and/or variations in the 
flow paths. Repeated injections would maintain reducing conditions 
throughout the site and, thus, prevent the untreated groundwater from 
destabilizing the arsenian pyrite. 

Of the three examined interpolation methods, OK was the most ac-
curate in predicting arsenic concentrations spatially and temporally 
throughout the bioremediation process. OK showed the lowest overall 
RMSE interpolation values and had mean CV values below zero 
throughout the bioremediation process. While these negative means 
indicated that OK underpredicted arsenic concentrations, the interpo-
lation prediction and error analyses revealed that OK was the most ac-
curate interpolation method, especially in determining the wells with 
low, regulatory arsenic concentrations of 0.05 mg/L. In contrast, EBK 
and IDW were consistently less accurate in predicting arsenic concen-
trations, both showing a tendency for overestimating and with IDW 
depicting larger prediction inaccuracies. These in-depth comparisons 
between OK, EBK, and IDW reveal the importance of using high- 
resolution sampling and a local-scale study area for accurate in-
terpolations. In regard to mapping groundwater arsenic contamination 
specifically: when using OK as the interpolation method, researchers 
should be cognizant of the fact that actual lows and highs may be higher 
than predicted but overall accuracy across the site is reliable; whereas, 
with IDW and EBK, there will be significant instances of overestimation 
and a lower degree of accuracy overall. In conclusion, this study high-
lights the importance of high sampling resolution over a very small area, 
with both significantly increasing the accuracy of the interpolations and 
allowing the study to precisely analyze and compare the interpolations. 
Considering these important discoveries, this study can help inform 
governments, industry, and local communities of the best sampling and 
interpolation practices for effectively monitoring and mitigating arsenic 
contamination. 
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